- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Chen (2)
-
Cheng, Jianlin (2)
-
Morehead, Alex (2)
-
Sedova, Ada (2)
-
Abraham, Subil (1)
-
Chen, Xiao (1)
-
Effler, T. Chad (1)
-
Elwasif, Wael (1)
-
Gao, Mu (1)
-
Giri, Nabin (1)
-
Haas, N. Quentin (1)
-
Lund-Andersen, Peik (1)
-
Mahmud, Sajid (1)
-
Prout, Ryan (1)
-
Quadir, Farhan (1)
-
Roy, Raj S. (1)
-
Skolnick, Jeffrey (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this work, we expand on a dataset recently introduced for protein interface prediction (PIP), the Database of Interacting Protein Structures (DIPS), to present DIPS-Plus, an enhanced, feature-rich dataset of 42,112 complexes for machine learning of protein interfaces. While the original DIPS dataset contains only the Cartesian coordinates for atoms contained in the protein complex along with their types, DIPS-Plus contains multiple residue-level features including surface proximities, half-sphere amino acid compositions, and new profile hidden Markov model (HMM)-based sequence features for each amino acid, providing researchers a curated feature bank for training protein interface prediction methods. We demonstrate through rigorous benchmarks that training an existing state-of-the-art (SOTA) model for PIP on DIPS-Plus yields new SOTA results, surpassing the performance of some of the latest models trained on residue-level and atom-level encodings of protein complexes to date.more » « less
-
High-Performance Deep Learning Toolbox for Genome-Scale Prediction of Protein Structure and FunctionGao, Mu; Lund-Andersen, Peik; Morehead, Alex; Mahmud, Sajid; Chen, Chen; Chen, Xiao; Giri, Nabin; Roy, Raj S.; Quadir, Farhan; Effler, T. Chad; et al (, IEEE/ACM Workshop on Machine Learning in High Performance Computing Environments (MLHPC))
An official website of the United States government
